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FOREWORD

The intercept algorithm presented in this report is central to the Antitactical
Ballistic Missile Global Effectiveness Model (AGEM) and is intended to be a robust
and operationally flexible solution method. This report discusses the derivation of
the exact derivatives required to iteratively solve operationally constrained Lambert
problems. Examples of the implemented algorithm's convergence characteristics are
also presented.

This report has been reviewed by Ted Sims, Head, Space Sciences Branch, and
J. L. Sloop, Head, Space and Surface Systems Division.

Approved by:

R. L. SCHMIDT, Head
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ABSTRACT

This report discusses general solutions to the spaceflight intercept problem

between moving source and target vehicles, under the constraint that only one

limited thrust burn is permitted. This one burn is approximated as an instantaneous
change in velocity, Av. Given first is a discussion of the solution space, aided by

Lambert's theorem. Generally, two solutions (and sometimes more) to the posed
intercept problem exist for a given launch time. Although previous solution

techniques in the literature concentrate on finding the minimum time solution, both

solutions are significant from an operational and a theoretical standpoint. Next,

exact derivatives for two different operational requirements are derived, which
facilitate finding all solutions to the intercept problem. Finally, example numerical

problems solved by the Antitactical Ballistic Missile Global Effectiveness Model
(AGEM) are presented to demonstrate the solution process for both operational
requirements.
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INTRODUCTION

The spaceflight intercept problem discussed herein is to fih1d the intercept tra-
jectory from a source vehicle in orbit (or on the Earth) to a target vehicle in orbit (or
on the Earth), with fixed thrusting capabilities. Many authors have discussed vari-
ous probiems related to this intercept problem. The classical Lambert problem' (viz.,
find the trajectory that flies between two fixed positions in a specified time-of-flight
iTOF)P is intimately related, but the problem considered here involves moving source
and target vehicles, not fixed positions. The -rinimum fuel intercept problem' does
consider moving source and target trajectories, allowing the number of burns and the
amount of fuel to be variable. In an operational environment, however, the size and
type of engine, amount of fuel, etc., are fixed, so there is a requirement to find inter-
cept solutions with these fixed thrusting capabilities. This is especially important for
so:id propellant engines, which generally burn only once. This report presents
resi!ts when the thruster allows only one burn with a fixed characteristic velocity
This burn is approximated as an instantaneous change in velocity, Av.

Parki, et al.,: describe a hybrid technique for solving the one-burn constrained
characteristic velocity intercept problem The technique first uses a simple maxi-
mum range check to reduce the search space of launch/intercept time pairs. Then, to
find specific solutions, an iterative technique on the interceptor TOF is applied to
obtain the Av, which achieves intercept when added to the source vehicle velocity.
Extensive numerical experience with this algorithm has shown that it always finds
the minimum time solution if the initial guess on TOF is sufficiently small (probably
due to the small flight path angle assumption), but it never converges to the maxi-
mum time solution. The next section shows that both solutions are significant from
an operational and a theoretical standpoint So the algorithm of Parks, et al., is very
fast if minimum time solutions are desired, but it is not robust for finding general
Eolutions. Cochran and Davy' also developed an iterative algorithm which obtains an
initial guess from an approximate solution to find the constrained one-burn mini-
mum time solution to the intercept problem.

This report discusses the fixed impulse intercept problem iom a broader
viewpoint than that of finding minimum time solutions. Tools are developed to
facilitate finding all solutions to the intercept problem, with a viev: to satisfying a
variety of operational requirements. If a specified characteristic velocity must be
satisfied, then specific solutions meeting operational requirementU can he found with
these tools. If a maximum characteristic velocity is given, and the engine can be
throttled to obtain lower energy burns, then a range of solutions can be obtained
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SOLUTION SPACE

To understand what type of analysis techniques are required to find .;olutions to
the intercept problem, the shape of the solution space must be understood. Figure 1
contains a typical plot of lAvi versus TOF for orbiting source and target vehicles. It is
obtained by solving Lambert's problem for numerous values of the TOR. As the TOF
approaches zero, the required 1Avi approaches infinity. Avg is the given charac-
teri-,,,ic velocity of the source. The points where the horizontal Avg line crosses the
IAv1 curve correspond to solutions to the posed problem. The first solution (minimum
value of TOF) corresponds to the depressed trajectory solution (low initial flight path
angle, low apogee, and short TOF), while ttWe second solution is the lofted trajectory
(high initial flight path angle, etc.). This is analogous to the two solutions obtainable
for the ballistic missile problem,' where trajectoritL are sought between two fixed
positions at the same altitude, with the velocity magnitude at the source point being
a fixed value. In that case, it can be shown analytically that for velocities less than
escape velocity and ranges less than the maximum range, two solutions (a lofted and
a depressed solution) always exist. For velocities of at least escape velocity, only one
solution exists. At maximum range and velocities less than escape velocity, again
only one solution exists. Extending this result to more general transfer problems,
Lambert's theorem' states that flight between two fixed positions of different
altitudes can be converted into an equivalent problem with equal altitudes, so that
the above results are true between any fixed positions. It is therefore not a surprise
that this property still generally holds even when considering flight between two
moving vehicles.

Any TOF between these two solution times (depicted in Figure 1) is possible if
the engine can be throttled or energy dissipation maneuvers are adopted. The
subsequent damped oscillations of the lAvi curve correspond to lAvi requirements for
secornd and later revs of the target trajectory. If the horizontal line at Avg crosses the
JAvi curve more than twice, it generally means that long flight times corresponding
to later revs of the target are achievable with the given Avg characteristic velocity.
The resulting interceptor trajectories are very lofted, "hanging" until the next pass of
the target. These hanging interceptor trajectories approach, but never reach, a
parabolic trajectory, so the upper bound for these damped oscillations is the lAvi that
yields escape velocity. Usually, however, later rev intercepts are not of practical
importance, so the first two solutions are the only ones of interest.

If various launch times are considered, a series of plots like those shown in
Figure I can be put together to consider the effect of launch time as well as TOF.
Figure 2 shows a resultant level curve in launch-time/TOF space for the Avg level
curve. That is, launch-time/TOF pairs on the curve are solutions. Any launch-
time/TOF pair on the intetior of the region bounded by the curve requires less lAvi
than Avg. Since the intercept time is the launch time plus the TOF, Figure 2 is easily
converted into a launch-time/intercept-time level curve depicted in Figure 3.

2
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The information in Figure 3 can be used to discuss solutions to various opera-
tional requirements. First, suppose knowledge of all possible launch times is
required to schedule maneuvers, taking into account external operational require-
ments. For a simplistic example, control facilities may need to coordinate independ-
ent maneuvers, so the union and intersection of the laun-h times for various vehicles
may be required. In this case, all times between tL,I and tL,2 in Figure 3 yield
achievable intercept. Call the need to schedule launch times a Case 1 operational
requirement. On the other hand, there may be a need to schedule intercept times.
Again, for a simplistic example, monitoring facilities may require intercepts of
various vehicles to occur at separate times, so the knowledge of all achievable
intercept times between tj,1 and t12 in Figure 3 permits the coordination of intercept
times. Call the need to schedule intercept times a Case 2 operational requirement.
Notice that different techniques are required to solve Case 1 problems than are
required for Case 2 problems, since in general tL,1 does not correspond to ti,1 (that is,
tL,1 is not the launch time that achieves intercept at tl,1 ); this is also true for tL,2 and
tI,2. Knowledge of the intervals ItLj1, tL,2] and [ti1, t1,2] alone are not sufficient;
solutions for specific launch times or specific intercept times are also required.

4
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SIMPLE ITERATION SCHEME FOR CASE 1

The double iteration scheme proposed in this report for Case 1 operational re-
quirements is similar to that described by Parks, et al.:' Since the launch time is fired
in Case 1, the position of the launcher is fixed in the attempt to find the trajectory
that intercepts the moving target with the prescribed magnitude of the velocity
change vector, Av. First, a guess of the TOF of the intercept trajectory, t, is made,
which fixes the time of intercept, and hence the position of the target at intercept.
With the launch and target positions known, and with the given t, finding the
trajectory between those positions that traverses the path between them in time 1 is
merely a Lambert problem. This Lambert problem can be solved by a variety of
iteration schemes; one of the more robust algorithms is given by Battin.' The
Lambert iteration is the inner loop of the double iteration scheme.

The solution of Lambert's problem results in knowledge of the initial velocity
vector of the intercept trajectory; the difference between this velocity and that of the
launcher trajectory yields the Av at launch. I vl is then the characteristic velocity of
the interceptor required to perform this maneuver. The specified fixed characteristic
velocity of the interceptor vehicle in question (Avg), however, is in general different
from lAvi. So, the outer loop of this iteration scheme must adjust the TOF, t, in order
to drive the error 6vA lAvl - Avg to zero. Parks, et al., 3 proposed one scheme of
updating r based on an approximate derivative. In this report, a better method for
updating t is presented, which uses an exact derivative and is more robust over a
wider domain of the problem.

d6v

Specifically, the exact derivative of 8v with respect to the TOF, d , for both

Case 1 and Case 2 problems, is presented. Knowledge of this derivative allows a las-
sical Newton's method to be performed in order to iterate on i

6v(t)

n+1 L n n (1"(d6t)

dbv

The derivation of - is given in the next section. Furthermore, knowledge of this de-

rivative facilitates finding regions where solutions to 5u 0 exist and whether they
exist for the particular problem at hand.

To illustrate this, refer again to Figure 1, which shows a typical plot of lAvi as a
function of t for a case where both the source and target are vehicles in low Earth
orbit. The horizontal line corresponds to the hardware prescribed Avg; where the
curve crosses this horizontal line corresponds to solutions to the posed intercept prob-
lem. If the first possible intercept is desired, then the depressed trajectory is chosen.

5
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d~v
The value of d at the solution is negative for a depressed trajectory and positive for

ddiv

a lofted trajectory. The value of t where d-' =0 corresponds to the minimum energy

trajectory, which separates the depressed from the lofted trajectory. These observa-
tions lead to the following method for finding both depressed and lofted trajectories.

dliv
First, solve for d-- =0to find the minimum achievable IAvi, denoted Avmin, occurring

at TOF trmin. If Avmin > AVg, then no intercept is possible at this launch time. On the
other hand, if intercept is achievable, then the depressed solution occurs at some tdep
E (0, tmin), so that the solution is bounded. A Newton iteration, Equation 1, generally
finds tdep swiftly when the initial guess to E (0, mrin). It has been found advantageous
to augment the Newton iteration with checks to assure that convergence is occurring.
A switch to some safe bracketing algorithm such as bisection is recommended in the
rare event when the Newton iteration is not converging. To find the lofted trajectory,
Newton's method can be used with an initial guess to _> t min Again, checks should

S~d~v

be implemented to ensure convergence. A test to assure that dt =0 will also help
guarantee that the convergence is occurring in the correct region.

If the minimum possible TOF is the one that is always desired, then starting
with a short TOF as the initial guess and ;terating with Newton's method until con-

d~v
vergence usually works very well. If d-- becomes positive in the iteration process,

then the minimum energy solution has been passed, and it can be assumed that the
minimum tAvi is greater than AVg. That is, no solution is possible. If a solution is
possible, the iteration usually finds it rapidly.

CASE 1 DERIVATIVE

Since Avi = -Av.v , the desired derivative of the error in Av with respect to
TOF is

d&v d d Av day- (JAI, - AV • %/A v v- v . . . (2)
dt dtL dt d AvI dt

6
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Furthermore, dAv dvo_r -d (where vo denotes the initial velocity of the interceptdrT dT.

trajectory), because the velocity of the source vehicle is fixed with respect to t. So

d _v Av d v,, -- . •(3)
dt lAvI dt

dv
This means that the derivative _-2° is required. For notational convenience, let sub-

dt
script "1" denote quantities related to the source trajectory, let subscript "2" denote
quantities related to the target trajectory, and let subscripts "o" and "f' denote initial
and final quantities of the intercept trajectory. Then, as long as rl and vo are linearly
independent (i.e., the interceptor trajectory is not rectilinear), the final intercept
trajectory position can be written as a linear combination of these two vectors

r2 = f r, +ggv (4)

The scale factors are the so-called "f and g expressions," which are well-known
functions of the intercept geometry . Specifically

f= 1 + (Cosv -1) (5)P

and

r, r sin Avg = ~(6) •

where ri and r2 are magnitudes of rl and r2, Av is the angle between rl and r2, p is
the semi-latus rectum of the intercept orbit, and p is the gravitational parameter.
Solving Equaidon 4 for vo yields

r2 - fr(
0 g

This gives the derivative

df -f dg

dv V2- d2 r)g-(r 2 - dfrt1dg (8)
dt g2•

In turn, the derivatives df and
dt

7
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L9 must be determined. Differentiating Equat-ons 5 and 6 yields
dt

_p (9)
df ' tdAd- p, ' ) (cosAv - 1) - -sinAv -dt

and

d~v
dg rlr2sinAv +r rcsAv d- r, r sLtAv dp (10)

Since cos 6Vy rl r2

rI r2

d~u r2 (r, -r. 2 (-r2 (r1
dt r r,2 sin Av

1 2

Now the only undetermined derivative is . To find this derivative, a relation-

ship between the semi-latus rectum, "p," uf the intercept orbit and the TOF must be
found. The TOF equation as a function of orbital parameters, which in turn are
implicit functions of "p," gives the desired relationship. For elliptical trajectories,
Bate, et al.,6 give the TOF for the intercept trajectory

t = g + NR (AE - sinAE) (12)

where a is the semimajor axis and AE is the change in eccentric anomaly of the inter-
cept trajectory. Each of the three variables on the right side of the equation is a func-

tion of"p," so that implicit differentiation of both sides with respect to T will cause dp
dt

to appear on the right side of the equation. !! can then be solved for algebraically.
di

To this end, first cast g, a, and AE in terms of geometric parameters and p (and
previously defined functions of these quantities)6

r, r2 sin AV(13)

8
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mkp

(2m - 1 2 p2 +2k/p - (14)

and

Cos2( A E (k_-l1P2 (15)
2 2 m p2

Here the auxiliary geometry functions k, 1, and m are

k = r, r2 (1 - cos v) (16)

1 = r + r2 (17)

and

m = rt r2(1 + Cos V) (18)

Hence, Equation 12 can be written functionally as

E = F( glr2(E), AV(T),pE) J, a[k(E),1(t), m(t), p(t) ]1 AE[ k(t), I(t), m(t),p tP j (19)

Implicitly differentiating Equation 19

dt OF (lg r2 Og dAv Og dp

cit ag Or2z 2 8v ci alp -dit

OF Ida k da dl Oa dm da dp
+ +-- + + L (20)

a dk t Olat dm dt dp dt

OF (dME dk oAE dl adE dm aAE dp
+ - .(- + - -- + - + +-

aAE ak dt 81it d Om &t Op dt

Solving Equation 20 for dp
dt

DF W ýg. d2 g dAy OF ( dodk ad! dl kd'n

dit g ar2 2 OAv dct - k dct / dt am dti

(21)

oF ( dAEkAE dl +AE dm+)n

MiE k dt ol &t Om dt'.

9
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where

D = F a (22)
-- + -- + -

Og Op Oa -p OAE Op

Each of the derivatives in Equations 21 and 22 are easily derived by straightforward
differentiation of formulas given above.

Now Equation 21 can be used in Equations 9 and 10, together with Equation 11,
to compute Equation 8. Equation 8, in turn, is used in Equation 3 to obtain the
desired derivative to be used in Newton's method, Equation 1.

dbv
If the current intercept trajectory is hyperbolic, then - must be determined

with the TOF equation corresponding to hyperbolic flight 6

t = g + - (sinhAF- AF) ý23)
p

where AF is the hyperbolic eccentric anomaly. Let the right side of this equation be
called G. Then, analogous to Equation 21, the same procedure is used to find

dp D I OG g + ag d~v lOG + G z.F )( aa Ak Oaadl Oaadm
dt D,, ag r2 ~ OLv dT I Ox aA OaJA kdi a Ad am dti

(24)

aG OAF ( Of O2+ f d~vl
OAF Of Or2 2 +Av dT

where

Dh = OG Og OG Oa OG OAF Oa OAF Of\ (25)

ag ap Oaa p aAF\a Op Oaf OP1

The only new function here, other than G, is that relating AF to intercept geometry
parameters (and its derivatives)6

r

coshAF = 1 - 1- ( ) (26)
a

10
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CASE 2 PROCEDURES

For Case 2 operational requirements (find the launch times to intercept at a
fixed intercept time), a slightly modified iteration scheme must be employed. In this
case, since the intercept time (and hence the intercept position) is fixed, a variable
TOF means that the launch location is moving as a function of t. For example,

dr dr if r is the position of the source vehicle, since an increase in t means
dt dt
that the time of launch is decreasing. The most straightforward method of handling
this problem would be to start the above process again, but now allowing rl to vary as
a function of t instead of r2.

An alternative raethod, which makes use of the symmetry of Keplerian orbits,
takes advantage of most of the Case 1 derivatives. Consider a trajectory from a
starting point to a terminal point. If a trajectory is fclown from the terminal point
with the negative of the terminal velocity, the same trajectory will be traversed in
the opposite direction, reaching the starting point in the same TOF with a velocity
equal to the negative of the starting velocity. So, the problem of finding launch times
to intercept at a fixed intercept time can be recast into a problem where the launch
orbit becomes the target orbit and the target orbit becomes the launch orbit. The only
adjustm...nt that must be made is that all velocities involved become the negative of
those in the real problem. For the rest of this section, the notation reflects the recast
problem (for example, r2 in the recast problem is really the launch position in the
starting problem, v2 is the negative of the starting interceptor velocity, etc.).

The only difference between the recast problem and the Case 1 problem is that
the prescribed velocity, AVg, must now be matched at the terminal point instead of
the starting point. Using the notation from Case 1 for the recast problem, the
requirement is, given that

Avf = vf - v2 (27)

8 VfA IAVfI - AV = 0 (28)

The requisite derivative for Newton's method of finding the zero of the bvf function is

d 0-V f _ d Avf dAvf
dfdt di (g d If .AVf, = AV - (29)S- ,t(I~ ,.A-.I c= it

In turn

dA.v dvf dv 2 (30)
d( dt i dt

11
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But since the change in vv in TOF is the same as the change in v2 in time,

dv dv.2 its derivative is just the gravitational acceleration- So

dt dt

dAvf dvf p r2H
=(31)

di dt r 1

To find the derivative of vf, write it as6

vf = f.ri +gVo (32)

Then
dv_ df dk dvo

- - r1 + --v + g- (33)

dv

Note that --2 has already been determined for Case 1 problems, so the remaining
dtderivatives to be determined are the derivatives of f• and I•. The equation for g is'

r!

=I - - (I - cos Av) (34)
P

so that
di r1  cp r1  dAy

-= -- (1 - cosAv) sinAv- (35)
dt p2 dt p dt

Everything on the right side of the equation has already been determined in the

previous section. As for f, the identity

1 = f g -f g (36)

can be differentiated to yield
df fdg + , d _ f-g (37)g-

dt g dit dt dt

Again, all other derivatives have already been determined i the p;evious section.

12
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EXAMPLES AND COMPARISONS

Various examples of the intercept algorithm used in the Antitactical Ballistic
Missile Global Effectiveness Model (AGEM) follow. This model has been used in
various configurations to simulate orbiter-to-orbiter, ground-to-orbiter, and ground-
to-ground engagements for Strategic Defense Initiative (SDI), antisatellite (ASAT)
and antitactical ballistic missile (ATBM) scenarios. The examples that follow are
exclusively orbiter-to-oibiter intercepts.

For the orbiting satellite that will launch the interceptors in this series of
examples, the initial inertial position and velocity vectors are

7015.9485

r, 0.0 km

0.0

0.0

v 7.5496259965 krrJsec

0.0

The starting inertial position arid velocity vectors of the orbiting target are

5740.3215
rtI 3189.0675 [km

-3189.0675

2.82181264515

v 1.5676736918 km/sec

6.64693645322

Figure 4 shows the I Av I and t solution space for interceptors launched at time
0.0 (corresponding to the initial rs). The minimum velocity intercept solution is

I Avl = 0.649912 kin/sec

v = 7.989828 km/sec
0

t = 462.3349 sec

In each of the eight examples presented, the required intercept impulse is
Avg = 3.95268 km/sec, and the flight time is constrained between 0 and 3000 sec.
The 3000-sec limit has been arbitrarily imposed to keep engagement solutions inside
a single-orbit revolution of the target. Algorithm iteration convergence tolerances
are 0.00001 km/sec for velocity and 0.001 sec for flight time. For these parameters,
there are two possible intercept trajectories; one depressed with a flight time of
338.9 sec and one lofted with a flight time of 705.4 sec.

13
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FIGURE 4. EXAMPLE SOLUTION SPACE

Table 1 summarizes the examples and shows the type of trajectory to which the
algorithm converged and the number of iterations required. Figure 5 shows the con-
straints imposed on each example. For each of the example convergence data tables,
n refers to the iteration number and n, refers to the number of iterations required to
achieve convergence of the Lambert iteration (inner loop). The flight time and
impulse for each step are also shown. The last row in the tabie presents the last
significant iteration trial. The actual final past through the algorithm yields
identical results, to the accuracy presented. In each table, the initial flight time
guess (n = 1) is the first row.

Examples 1 and 2 demonstrate the classic use of the algorithm where either the
lofted (maximum flight time) or depressed (minimum flight time) trajectory is
acceptable. Example I uses an initial flight time guess well below the depressed solu-
tion, while Example 2 uses an initial guess well above the lofted solution. Conver-
gence data for Example I are shown in Table 2. Example 2 data are listed in Table 3.

Example 3, which uses the algorithm specified by Parks, et al.,3 is presented for
convergence characteristics comparison and for completeness. Table 4 contains data
for this example.

14
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TABLE 1 EXAMPLE SUMMARY. FLIGHTTIME LIMITS AND CONVERGEN -E
RESULTS

Eq Cwte Mm Gue' Max Trajectory
Type I sec ) I e(" I (.4e() Type

New 1 1.0 10.0 3000.0 Deprested 12

2 New 1 1.0 1500.5 3000.0 Depressed 1I

3 Parks 1 1.0 10.0 3000.0 Depresied 20

4 New 1 1.0 3.0 462.3 Depresed 12

5 New 1 1.0 231.7 462.3 Depressed 10

6 New 1 462.3 464.3 3000.0 Lofted 10

7 New 1 463.3 1731.7 3000.0 Lofted 9

8 New 2 1.0 10.0 3000.0 Depressed 16

flight tihrme bunds
Examples 1, 2,3 & 8

4-Examples 4& Eumpiee 6 &7

14 -
12 Exampt* 5 Iintial flight time guess Example 7

*Examplea Eapl

10

8-/
Ex@ 1 s~3.4& 8

6-

required~
impulse I le

0 -

-_ I N•

depressed lofted
solution i solution

Flight Time (sec)

minimum
velocity
solution

FIGURE 5. EXAMPLE CONSTRAINTS
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TABLE 2. EXAMPLE 1: NEW ALGORITHM - CASE 1
1 s t s 3000)

n n, t (sec I&vl (kmlsee)

1 12 10.0000 459.318

2 10 19.7153 228.333

3 9 38.3218 112.882

4 8 72.4360 55.2278

5 7 129.734 26.5586

6 6 210.451 12.5754

7 5 290.762 6.30517

8 4 332.161 4.24263

9 5 338.804 3.95835

10 5 338.939 3.95273

11 12 338.940 3.95266

12 8 338.940 3&95268

TABLE 3. EXAMPLE 2: NEW ALGORITHM -CASE 1
(1 S t S3000)

n n, t (-ec) lAvi km/gec)

1 5 1500.50 8.71621

2 6 196.303 14.2024

3 5 279.510 6.96989

4 5 328.640 4.39801

5 7 338.626 3.9658-,

6 9 338.940 3.95271

7 15 338.940 3.95269

8 338.941 3.95270

9 5 338.941 395265

10 12 338.940 3.95266

11 8 338.940 3.95268
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TABLE 4. EXAMPLE 3. PARKS, ET AL. - CASE 1
(1 S t 3000)

n n1, t (sec) lAy! krnl/ c)

1 12 10.0000 459.318

2 10 19.8032 227.278

3 9 38.8237 111.301

4 74.5508 53.3887

5 7 137.058 24.6163

6 6 229.529 10.6950

7 5 318.122 4.88246

8 4 341.971 3.82679

9 7 338.225 3.98275

10 5 339.099 3.94600

11 4 338.904 3.95418

12 8 338.948 3.95234

13 5 338.938 3.95279

14 7 338.941 2..95266

15 7 333.940 3.95267

16 5 338.940 3.95271

17 5 338.940 3.95262

18 5 338.939 3.95272

19 5 338.940 3.95266

20 7 338.940 3.95268

Examples 4 and 5 have been forced to converge on the depressed trajectory by
virtue of the flight time limits used. Example 4 has specified an unreasonably small
initial flight time guess, while Example 5 has specified an initial guess very near the
solution. Example 4 data are listed in Table 5, and Example 5 data are given in
Table 6.

Examples 6 and 7 have been forced to find the lofted solution because of the
minimum flight time requirements. The initial guess in Example 6 is lower than the
expected lofted trajectory solution, while that in Example 7 is above the expected
lofted trajectory solution. Data for these examples are listed in Tables 7 and 8,
respectively. Notice that in both these examples the algorithm makes use of the
implemented safe bracketing, nethod to bring the flight time into the neighborhood of
the known solution.

17
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TABLE 5. EXAMPLE 4: NEW ALGORITHM - CASE 1
(1 5 iS 462.3'

n n, t (•sc) AvI (km/sc)

1 14 3.00000 1552.95

2 12 4.97440 775.044

3 il 11.8480 386.204

4 10 23.2963 191.790

5 9 45.0426 94.6228

6 8 84.2637 46.1264

7 7 147.999 22.0711

8 6 232.049 10.4694

9 5 305.637 5.50047

10 4 33r 90 4.09023

11 5 338.909 3.95398

12 14 338.940 3.95268

TABLE 6. EXAMPLE 5: NEW ALGORITHM - CASE 1

(1 : t 5 462.3)

n n, t (sec) IAv (kmsec)

1 6 231.668 10.5033

2 5 305.398 5.51278

3 5 335.644 4.09221

4 6 338.908 3.95404

5 5 338.940 3.95262

6 5 338.939 3.95272

7 5 338.940 3.95274

8 6 338.941 3.95264

9 12 338.940 3.95266

10 8 338.940 3.95268
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TABLE 7. EXAMPLE 6: NEW ALGORITHM - CASE 1
(462.3 s .s 3000)

n n, t (sec) IAvI (krnlsec)

1 J 464.335 0.65162

2 4 2415.38 11.5062
3 3 462.335+ 0.64991

4 5 1731.17* 9.49904

5 3 1308.22* 7.95633

6 6 1096.75" 6.93482

7 3 551.024 1.89556

8 5 679.003 3.65531

9 5 704.564 3.94370

10 5 705.385 3.95268

NOTE: The following indicate that the algorithm's flight time guess is
outside the externally imposed flight time limits:
+ = reset Tffguess toTffmin.
* = using bisection to reset Tff guess

TABLE 8. EXAMPLE 7: NEW ALGORITHM - CASE 1
(463.3 S t 5 3000)

n ni t (sec) 1Avl (kmisec)

1 5 1731.67 9.50062

2 3 463.335+ 0.65034

3 5 1731.67* 9.50062

4 5 1308.89* 7.95919

5 6 1097.50" 6.93892

6 3 550.488 1.88695

7 5 678.856 3.65359

8 5 704.555 3.94360

9 5 705.385 3.95268

NOTE: The following indicate that the algorithm's flight time guess is
outside the externally imposed flight time limits:
+ = reset Tff guess to Tff min.
* = using bisection to reset Tffguess

19



NSWCDD/TR-92/527

Example 8 demonstrates the "backward" (Case 2) solution of the minimum
flight time intercept. In this example, the interceptor is "launched" from rt
propagated forward to 338 sec (the "forward" depressed trajectory impact time). The
algorithm is required to find a solution that has an "impact" closing velocity equal to
the required velocity. In this "backward" intercept, flight time is effectively nega-
tive, so that "impact" at r, is before "launch" from rt. Algorithm convergence data are
presented in Table 9.

TABLE 9. EXAMPLE 8: NEW ALGORITHM - CASE 2
(1 s T. 3000)

n n, t (sec) IJvI (kmhec)

1 9 10.0000 131.124

2 8 19.6991 66.5680

3 7 38.2312 34.3066

4 6 72.0749 18.2096

5 5 128.610 10.22591

6 5 207.990 6.35474

7 5 278 909 4.62525

8 6 331.1:4 4.04192

9 6 338.754 3.95473

10 5 338.937 3.95274

11 7 338.942 3.95266

12 16 338.941 3.95265

13 5 338.937 3.95275

14 5 338.943 3.95264

15 5 338.939 3.95270

16 16 338.941 3.95268

Though the algorithm presented in this report is substantially more complex
than that presented by Parks, et al.,3 this new algcrithm converges to a solution more
quickly. Examination of the number of iterations required for Examples 1 and 3 in
Table 1 demonstrates that the increase in complexity (lines of code) is offset by more
rapid convergence characteristics.

Examples 1, 4, and 6 demonstrate how judicious specification of intercept flight
time bounds can be used to choose between maximum and minimum intercept flight
time solutions. In Example 1, the time limits indicate that there is no real preference
of trajectory shape. The bounds set in Examples 4 and 6 force the algorithm to find
only the depressed or lofted trajectory shapes, respectively. However, knowledge of
the solution space minimums (Figure 4) is required.

20
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Comparison of Examples 1 and 2 shows that the algorithm converged to the
depressed trajectory in both examples. This is due to the slope of the curve past the
neighborhood of the lofted solution. This value tends to correct the succeeding flight
time iteration to a value near or below the depressed solution, which is then con-
verged to. This is a manifestation of the geometry of this example and of the initial
flight time guess. Figures 6 and 7 are graphical representations of the convergence
behavior for Examples 1 and 2, respectively.

Examples 6 and 7 show the necessity of implementing an auxiliary convergence
method, such as a bisection method. In both these examples, the value of the slope at
the initial flight time guess causes the next guess by the standard iteration method to
fall owtside the allowed limits. At this point, as shown in Figure 8 (Example 7), a
bisection method can be used to force subsequent flight time iterations into the
neighborhood of the solution, at which point the presented eqdations take over and
converge.

In summary, the algorithm presented in this repU L is robust. In the presence of
stressing engagement geometries, Newton's iteration requires augmentation using
some safe bracketing method to guarantee convergence within the specified flight
time bounds.
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CONCLUSIONS

The new algorithm for solving single-impulse intercept problems is a signif-
icant improvement over existing methods for three reasons. First, it has the intrinsic
ability to find either or both of the solutions that exist in the typical intercept
scenario, as opposed to finding only the minimum time solutions as extant methods
do. Second, the iteration scheme converges rapidly. Third, the algorithm can solve
for either set launch times or set intercept times depending on whether launch times
or intercept times need to be scheduled. These attributes combine to produce an
algorithm that is both flexible in its ability to handle a wide variety of intercept
problems and robust in its capacity to rapidly converge to appropriate solutions. It
has proven valuable in diverse space and naval defense analyses.
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